Updates in silicon and electronics technology.

Ed.: This is a special feature courtesy of Binghamton University.

Integrated photonic circuits demonstrate ultralow loss. EPFL researchers have developed a technology that produces silicon nitride integrated photonic circuits with low optical losses and small footprints. Silicon nitride has been a material of choice for applications where low loss is critical, such as narrow-linewidth lasers, photonic delay lines, and those in nonlinear photonics. The team combined nanofabrication and material science based on the photonic Damascene process developed at EPFL. With this process, the team made integrated circuits of optical losses of 1dB/m, a record value for any nonlinear integrated photonic material. That low loss considerably reduces the power budget for building chip-scale optical frequency combs used in applications that include coherent optical transceivers, low-noise microwave synthesizers, lidar, neuromorphic computing and optical atomic clocks. (IEEC file #12282, Photonics Media, 5/6/21)

Samsung develops advanced chip packaging tech. Samsung Electronics has developed an advanced chip packaging technology for high-performance applications. Its next-generation 2.5D packaging technology, Interposer-Cube4 (I-Cube4), is expected to be widely used in areas like high-performance computing, artificial intelligence, 5G, cloud and data centers with enhanced communication and power efficiency between logic and memory chips. I-Cube is heterogeneous integration technology that horizontally places one or more logic dies, such as CPU and GPU, and several high bandwidth memory dies on a paper-thin silicon interposer. (IEEC file #12285, Science Daily, 5/6/21)

To continue reading, please log in or register using the link in the upper right corner of the page.

Submit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedInPrint Article
Don't have an account yet? Register Now!

Sign in to your account