How VPS Resolves Voids and Popcorning Print E-mail
User Rating: / 0
Written by Jochen Lipp   
Friday, 30 November 2012 16:15

The superior heat transfer to forced convection ensures no overheating.

Part of the reason vapor phase soldering technology is increasing in popularity is that Pb-free requirements and product miniaturization drive production issues not thoroughly addressed by conventional convection reflow. Our April 2012 column, “Vapor Phase Heat Transfer,” discussed how vapor phase provides solutions for tombstoning. This month we look at void reduction and popcorning/delamination elimination.

Reducing voids. Voids in leadless package solder joints are predominantly created by either trapped gases or entrapped flux. PCB layout, solder paste selection and profiling are the three biggest factors to examine in minimizing voids. In conventional convection reflow, the profiling development steps in this area can be time-consuming, as it is necessary to achieve proper peak temperatures without overheating to the point that fluxes are boiled off or become encapsulated in solder balls. In a temperature-driven vapor phase machine, it is very easy to program a variety of soak profiles, and programming time is minimal. Comparatively, programming a similar number of profiles on a convection reflow machine may take hours.

Today’s VPS process addresses this issue by a combination of improved heat transfer properties of inert vapor and controlled immersion into the vapor, which produces a thermal soaking zone.

A fundamental difference between convection reflow and VPS is heat transfer efficiency. While the time required to achieve liquidus in convection reflow can increase peak temperature by as much as 30˚-35˚C, in vapor phase the maximum board temperature is physically limited to the temperature of the vapor. Using a Pb-free SnAgCu solder, that would be 230˚C.

From a profiling standpoint, using a controlled immersion process, the PCB would be moved into the vapor. Once the board temperature reaches a preset plateau, it would be moved up to the vapor boundary. After a soaking time of 60 sec. the PCB is moved over dedicated levels downward, which controls the gradient and time to reach solder temperature. In programming the profile, the soldering time (time over liquidus) is preselected and machine-controlled. Since the PCB temperature cannot exceed the vapor temperature, no overheating occurs in the thermal soaking zone.

Popcorning/delamination elimination. Steam pressure in plastics and laminates can cause the board surface to popcorn or delaminate. As shown in Figure 1, in convection reflow, PCB temperatures can easily reach 260˚C or higher. With Pb-free soldering, a PCB temperature of at least 250˚C is likely. Comparatively, the recommended maximum temperature for VPS of SAC solder is 230˚C, as the melting point of that solder is 221˚C.

In vapor phase, heat is transferred to the board both from components above and the PCB below. Comparatively, in convection reflow, the heating process may be impacted by dense components.

As a result, assemblies with high-density components such as BGAs may require longer times at peak temperature (Figure 2) to ensure that shadowing on the lower side of the BGA doesn’t result in unsoldered balls.

The inert environment created by the vapor drives an even heating process even under the BGA, enabling the solder to achieve liquidus at lower temperatures (Figure 3). When vacuum vapor phase equipment is used, voids may be reduced to a level below 2%. This lower soldering temperature combined with the efficiency of heat transfer in a vapor blanket eliminates the popcorning and delamination caused by exposure to higher and potentially uneven temperatures in convection reflow.


1. H. Leicht and A. Thumm, “Today’s Vapor Phase Soldering an Optimized Reflow Technology for Lead Free Soldering,” SMTA International Proceedings, August 2008.

Jochen Lipp is CEO of IBL Technologies (; This e-mail address is being protected from spambots. You need JavaScript enabled to view it . His column runs bimonthly.

Last Updated on Monday, 03 December 2012 16:59


Eastern-US: China’s New Competitor?

Parity emerges among EMS Factories from Asia, Mexico and the US.

For the first time in years we see parity in the Eastern US among EMS factories from Asia, Mexico and the US. This EMS market condition will permit American OEMs (the EMS industry refers to OEMs as customers) to have more EMS pathways to choose from. Now more than ever, such EMS assignments will require deeper investigation relating to the OEMs’ evaluation of manufacturing strategies.

The Human Touch

For those who count on the electronics industry for big feats, it’s been a remarkable couple of years.



Advances in Concentration Monitoring and Closed-Loop Control

Contaminated bath water skews refractive index results. New technology can accurately measure aqueous cleaning agent concentration.

Circuits Disassembly: Materials Characterization and Failure Analysis

A systematic approach to nonconventional methods of encapsulant removal.





CB Login



English French German Italian Portuguese Russian Spanish


Techspray Introduces Fine-L-Kote High Viscosity AR Conformal Coating
Fine-L-Kote high viscosity AR acrylic conformal coating reportedly widens the process window and flexibility. Can use as-is for dipping or thin down for spray systems. Is for selective spray systems...