caLogo

Material Gains

Alun Morgan

Industry 5.0 promises a more humanistic approach to production.

It has been over a year since governments began lifting restrictions on citizens’ movements to resuscitate their economies, and some 18 months since the Ever Given blocked the Suez Canal in March 2021, sending global shipping activities into spasm.

But supply chains today are in critical condition. Assets and materials are in the wrong places around the world, factories are struggling to resume normal activities, and large numbers of people are simply not working, having either not returned to work after the pandemic or become part of what is now termed the Great Resignation, or the Big Quit. Some 20 million workers around the world, in the largest and most advanced economies, have left their posts, citing factors such as burnout, pressures at home and isolation, and feeling unvalued by their companies.

Read more ...

Alun Morgan

Work continues on quantum machines. But classical computing is here, now, and faster and more powerful than ever.

When Frontier, the latest supercomputer at the US Department of Energy’s Oak Ridge National Laboratory (ORNL), went live at the end of May, it became the first to demonstrate true exascale performance, according to the TOP500 organization that benchmarks commercially available computer systems. At 1.102 Exaflop/s (quintillion operations per second), Frontier’s performance is three times faster than the previous performance leader, Fujitsu’s Fugaku system at the Riken Center for Computational Science (R-CCS) in Kobe, Japan. By breaking the exascale barrier, Frontier is 10 times faster than its ORNL predecessor, Summit.

Read more ...

AI is spreading quickly into sensors and will drive an even greater appetite for data.

Read more ...

Alun Morgan

The current difficulties call for a more strategic approach to arranging our global supply chains.

The supply chain chaos in the aftermath of the pandemic has highlighted the risks associated with globalization. As a phenomenon, globalization has served many of us well. Its ideological opponents, however, see today’s situation as justification for its demise. There is no denying current events have highlighted shortcomings. We would be foolish not to learn and adapt.

I’ve addressed the subject of onshoring as a potential antidote to globalization many times in the past. Arguably, now, the idea makes more sense than ever. On the face of it, shorter supply chains promise some protection against the unpredictability of today’s world. Hot on the heels of the pandemic, we now have the Ukraine crisis, and there is the fallout from Brexit, which has made for difficult and time-consuming trade between the region’s most influential economies. One major obstacle to the return of onshoring is essential indigenous-supporting industries have been largely swept away as activities have migrated offshore, taking expertise and investment with them. The conditions that caused and drove the offshoring remain in place, perhaps masked by current logistical difficulties. Accessing the data needed to move manufacturing activities from an established location is another barrier to reshoring.

Read more ...

Alun Morgan

As the pandemic becomes endemic, restoring order to the world’s prices and supply chains will take time and won’t be easy.

As we all adjust to the reality that Covid and its derivatives are here to stay, communities around the world are beginning to rebuild economically: returning to work, reviving businesses where possible and making new plans if not.

It is no surprise materials, inventory and shipping are in short supply and are often stuck in the wrong places. In some cases, services that companies used to rely on are no longer available because the suppliers have gone out of business. Workforces are depleted, and some knowhow, skills and experience have been lost. Rebuilding is not as straightforward as opening the factory doors, picking up the tools that were put down at the beginning of 2020 and getting on with it. Even now governments are still mandating measures such as the sudden full lockdown of Shanghai, which has severely impacted road and air transport. We must still expect the unexpected!

There certainly is the opportunity to build back better, but let’s not be simplistic. The world we built was highly sophisticated and interconnected – an ecosystem of ecosystems. It won’t be easy. It will take time. New leaders and innovators need to acquire the skills required to replace those we’ve lost. And we have other challenges too, like protecting the environment and transitioning to more sustainable ways of living. As if that wasn’t enough, further new tensions are adding to the pressure on resources and, as a result, prices.

Read more ...

Alun Morgan

The proliferation of satellites and the "orbital economy" have exciting implications for Earth – but not without challenges.

An exciting market is developing 300km above Earth. New Space promises to revolutionize the delivery of internet services and create new opportunities for Earth observation that could help us improve crop yields, anticipate natural disasters, and manage our impact on the environment. There are also opportunities for manufacturing in space, taking advantage of microgravity to produce high-purity optical fibers and materials such as graphene, semiconductors, and superconductors. The in-space, or orbital, economy is already being debated.

This commercial development of New Space, which defines low Earth orbits (LEO) in the 300km-2000km altitude range, has become possible through the ongoing democratization of rocket and satellite technology over the last few years. Until recently, space missions were mostly the preserve of government-backed organizations. Today, however, the responsibility for launching satellites, as well as taking people and supplies to the International Space Station, has become substantially outsourced to private enterprises.

The size of satellites themselves is also becoming smaller, while supporting increasingly sophisticated capabilities, allowing greater value at lower cost. Small satellites, or SmallSats, are generally considered to be less than 180kg and, in fact, have been in use since NASA’s pre-Voyager missions of the early 1970s. The category is now more subdivided than ever and contains nanosatellites less than 10kg, picosatellites in the 0.1-1.0kg range, and femtosatellites of 10-100gm, although these limits are not rigidly defined. And, of course, there are CubeSats: the scalable proposal based on a standard 10 x 10 x 10cm basic building block. These are accessible to academic groups, including schools, as well as small commercial organizations.

Read more ...

Page 4 of 7

Don't have an account yet? Register Now!

Sign in to your account