caLogo

A closer look at mixing methods and automated mixers.

While automation in manufacturing brings efficiency and consistency, the use of automated solder paste mixers is a topic of debate, with significant concerns over their impact on the paste’s properties. This comprehensive analysis delves into why many industry experts advise caution.

Solder paste is not just a blend of materials; it’s a finely tuned compound where each element plays a specific role. The balance between solder powder and flux is crucial, as it determines the paste’s behavior during the printing process and affects the quality and reliability of solder joints. Certain properties of the paste – its viscosity, rheology and thixotropy – fundamentally determine how well it will perform and can be significantly affected by how the paste is handled.

Read more ...

A special panel discusses the growth of AI tools and its possible effects on the industry.

“Will AI take my job?”

That’s the question on the mind of many around the world today – including electronics engineers and PCB design engineers – and was one of several questions considered during an online panel hosted by PCEA in March.

A group of panelists with notable AI experience – Circuit Mind’s Tomide Adesanmi, Cadence Design Systems’ Taylor Hogan, Zuken’s Kyle Miller, Luminovo’s Sebastian Schaal and Siemens Digital Industries’ David Wiens – gathered to share predictions for the future of AI in the electronics supply chain and answer questions from an audience of industry professionals.

Read more ...

A showcase of testing methods used in the development of robust materials.

Ruggedization means “to strengthen (something, such as a machine) for better resistance to wear, stress, and abuse.”1 Automotive systems are built for aggressive environments and are categorized as ruggedized electronics. One usually thinks of an all-terrain vehicle navigating an uneven landscape in an extreme hot or extreme cold environment. The systems require more robust electronic hardware due to their unusual working conditions and environmental exposure.

Today’s automotive electronics, specifically those for advanced safety features, require ruggedization against traditional as well as additional self-inflicted abuse. The high level of processing required to execute “sense” and “respond” of multiple safety systems working in concert creates increased heat and increased mechanical strain leading to shorter characteristic life. Advanced IC substrate packages create challenges for the system as well. The need to combat these additional challenges requires specific ruggedization. This work will discuss material choices that were designed to combat temperature, vibration, heat, and various aggressive environments to offer extended system life.

Read more ...

An exploration of the factors affecting the development and growth of low-temperature soldering.

Low-temperature soldering (LTS) is a rapidly developing field with several potential benefits to the electronics industry. These benefits include reduced warping of components and substrates, lower energy consumption and reduced material costs. The lack of a standard solder alloy and the unique properties of emerging alloys, however, require development of new fluxes and processes for success.

Herein we explore current challenges and opportunities in low-temperature soldering, including the limited availability of low-temperature alloys, the disadvantages of high-bismuth alloys, the impact of additive elements on alloy properties, the need for new flux systems and the importance of seeking guidance from solder suppliers.

Read more ...

Why Andrew Scheuermann thinks AI will be the assistant every engineer has needed.

We in electronics design and manufacturing know automation is part and parcel of what we do, but while the landscape has changed, be it the transition from mechanical drawings to CAD tools with their autorouters or from manual and semiautomatic printers and placement machines to lights-out factories where cobots have replaced operators, the industry still has a long, long way to go.

To help with perspective on this emerging technology, we interviewed Andrew Scheuermann in February. Scheuermann, along with his business partner, Tim Burke, is cofounder and CEO of Arch Systems, a Silicon Valley-based developer of software tools that collect raw machine data and use predictive and analytics to calculate manufacturing key performance indicators or KPIs.

Read more ...

Design and manufacturing considerations for HDI PCBs.

High-density interconnect (HDI) technology has been a major enabler of advancement in the electronics industry, providing the dense interconnections and intricate circuitry needed to create state-of-the-art electronic devices that are tightly packed with miniaturized components and 2.5-D/3-D semiconductor packages.

Miniaturization at the semiconductor level has driven miniaturization at the PCB level, with manufacturers striving to shrink the size of devices while maintaining or enhancing their capabilities. This has led to the development of compact smartphones, slim laptops, and wearable gadgets that seamlessly blend into our daily lives (Figure 1). Alongside miniaturization has been a constant push for faster processing speeds. As technology evolves, the processing power of electronic devices has skyrocketed, enabling quicker data processing, seamless multitasking, and smoother user experiences.

Read more ...

Page 1 of 78

Don't have an account yet? Register Now!

Sign in to your account